A mutation in human immunodeficiency virus type 1 protease at position 88, located outside the active site, confers resistance to the hydroxyethylurea inhibitor SC-55389A.

نویسندگان

  • M L Smidt
  • K E Potts
  • S P Tucker
  • L Blystone
  • T R Stiebel
  • W C Stallings
  • J J McDonald
  • D Pillay
  • D D Richman
  • M L Bryant
چکیده

The hydroxyethylurea human immunodeficiency virus type 1 (HIV-1) protease inhibitors SC-55389A and SC-52151 were used to select drug-resistant variants in vitro. One clinical HIV-1 strain (89-959) and one laboratory HIV-1 strain (LAI) were passaged in peripheral blood mononuclear cells or CEMT4 cells in the presence of SC-55389A. Resistant isolates from both strains consistently had a mutation to serine for asparagine at amino acid 88 (N88S) in the protease gene either alone or in combination with a change to phenylalanine at position 10. The N88S mutation, recreated by oligonucleotide-mediated site-directed mutagenesis in HXB2, was sufficient to confer resistance to SC-55389A. In contrast, SC-52151-resistant variants selected from the monocytotropic strain SF162 had multiple substitutions in the protease gene (I11V, M461, F53L, A71V, and N88D), and the N88D mutation, re-created by oligonucleotide-mediated site-directed mutagenesis in HXB2, did not confer resistance to SC-52151. The potencies of L735,524 and Ro31-8959 were not reduced when these compounds were assayed against variants with either the N88S or N88D substitution. Position 88 is in a helix that lies behind the substrate binding pocket and may indirectly influence inhibitor binding through interactions with the amino acid at position 31. The selected mutations were persistent in the viral populations after more than 20 passages in the absence of drugs. Passaging of virus first in SC-55389A alone and then in combination with SC-52151 resulted in the accumulation of more mutations in the protease gene (L10F, D35E, D37M, I47V, 154L, A71V, V82I, and S88D) and in the selection of a variant that was cross-resistant to multiple protease inhibitors. These results indicate that a mutation in the HIV-1 protease at a position that is located outside of the substrate binding pocket confers resistance to a protease inhibitor and that mutations in the protease gene accumulate with increasing selection pressure and can persist in the absence of selection pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs.

We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data ...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Resistant mechanism against nelfinavir of human immunodeficiency virus type 1 proteases.

Inhibitors against human immunodeficiency virus type-1 (HIV-1) proteases are finely effective for anti-HIV-1 treatments. However, the therapeutic efficacy is reduced by the rapid emergence of inhibitor-resistant variants of the protease. Among patients who failed in the inhibitor nelfinavir (NFV) treatment, D30N, N88D, and L90M mutations of HIV-1 protease are often observed. Despite the serious...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 1997